

Vittorio Villasmunta

1

Il linguaggio di *script* è una potente funzione che ci consente di istruire DA a compiere ogni operazione in maniera autonoma.

Possiamo in tal modo scaricare i dati ogni mezz'ora ed avere sempre l'ultima mappa sullo schermo, o inviare automaticamente le mappe alla stampante, e molto altro ancora!

Vittorio Villasmunta

2

Per istruire DA, abbiamo a disposizione una numerosa schiera di comandi.

In questa lezione inizieremo il nostro viaggio all'interno della funzionalità di DA più bella e <u>ricca di soddisfazioni</u>.

Vittorio Villasmunta

3

Per cui si dovrà procedere in questo modo nella costruzione dello script:

- La prima istruzione riguarderà l'eventuale impostazione del livello attivo (ad esempio, 500 hPa)
- Seguirà il campo di base da trattare (come, ad esempio, la temperatura)
- Eventuali conversioni tra unità di misura (ad es., da m/s a nodi)
- Infine, le modalità di presentazione grafica del campo prescelto (ad es., l'intervallo di contour).

Non attenersi a queste semplici regole può portare a risultati assolutamente imprevedibili!

Vittorio Villasmunta

5

Naturalmente, preso da solo non serve a nulla, poiché dobbiamo sempre specificare su <u>quale</u> <u>campo</u> CONT deve operare.

Diamo quindi un'occhiata ai principali campi su cui CONT esercita la sua funzione:

Vittorio Villasmunta

13

Temperature Temperatura TEMP C Temperatura del punto di DWPT C rugiada (dewpoint) Temperatura potenziale THTA Κ THTE Κ Temperatura equivalente potenziale Temperatura di bulbo BULB C bagnato Vittorio Villasmunta 14

Tecnica dell'altezza dello 0℃ della temperatura di bulbo bagnato

Ulteriore ausilio alla previsione del tipo di precipitazioni: fornisce come elemento aggiuntivo gli effetti del raffreddamento latente.

altezza Tw	Forma di precipitazione		
<u>≥</u> 3000f†	Quasi sempre pioggia; la neve è rara		
2000÷3000ft	Per lo più pioggia; la neve è improbabile		
1000÷2000f†	Pioggia persistente: facilmente può mutarsi in neve		
<1000ft	Quasi sempre neve; solo leggere o occasionali precipitazioni di acqua		

CONT BULB

Va	lutazione dell'instab	oilità attraverso l'es temperatura potenzi	ame delle variazioni iale	della
	Conoscendo le varia: ''altezza delle varie conto delle condizi dell'atmosfera.	zioni della temperat superfici isobarich oni generali di sta	rura potenziale θ con ne, ci si può render ibilità ed instabilita	n e à
	Stabilità assoluta	D0 / Dz > 0	Dθ _p / Dz > 0	
	Instabilità assoluta	D0 / Dz < 0	Dθ _p / Dz < 0	
				,
		Vittorio Villasmunta		23

Umidità			
Umidità relativa	RELH	%	
Rapporto di mescolanza	MIXR	g/kg	
		<u> </u>	
Vittorio Villasm	unta	25	;

Pressione e geopotenziale			
Pressione al livello del mare (QFF)	SLPR	hPa	
QNH (altimeter setting)	ALST	mmHg	
Tendenza barometrica	PTEN	hPa	
Altezza geopotenziale	HGHT	mgp	
Campo del geopotenziale geostroficamente bilanciato	GHGT	Mgp	
Pressione in quota	PRES	hPa	

Velocità del vento	WSPD	m/s
Vento (riferito al nord vero)	WIND	m/s
Direzione del vento	WDRC	0
Componente ovest-est	UGRD	m/s
Componente sud-nord	VGRD	m/s

Precipitazioni			
Nell'ora passata	PC01	Pollici	
Nelle due ore precedenti	PC02	Pollici	
Nelle tre ore precedenti	PC03	Pollici	
Nelle sei ore precedenti	PC06	Pollici	
Nelle nove ore precedenti	PC09	Pollici	
Nelle dodici ore precednti	PC12	Pollici	
Vittorio Villasmu	Inta	29	

	Indici			
Wind chill		WCHL	۴]
Heat Index		HIDX	۴	
Humidex		HUMX	C	
				_
	Vittorio Villasmunta	ı		30

Varie				
Latitudine		LATT	0	
Longitudine		LONG	0	
Altitudine		ELEV	m	
			1	
	Vittorio Villasmunt	a		31

