Corso di base sull'uso del software di analisi meteorologica DIGITAL ATMOSPHERE

A cura di Vittorio Villasmunta

1

Digital Atmosphere è un software per plottare e analizzare oggettivamente dati meteorologici.

Per far questo si avvale di un'ampia varietà di dati geografici e meteorologici.

5

Quali sono i formati accettati?

- Sinottici da stazioni terrestri (WMO FM 12 SYNOP)
- Sinottici da navi (WMO FM 13 SHIP)
- METAR (WMO FM 15 METAR)
- Boe (WMO FM 18 BUOY)
- Dati in quota (WMO FM 35 TEMP)
- Riporti da aereo (ACARS) (WMO FM 42 AMDAR)
- NMC frontal depiction transmission format (ASUS1 KWBC)
- dati in formato binario grigliati (GRIB) (WMO FM 92-IX)
- NEXRAD Level III (ICD 2620001) WSR-88D NEXRAD format
- \cdot bollettini di allerta per uragani emessi da NHC e JTWC
- \cdot immagini radar (nei formati GIF e JPG) da varie fonti meteo

Esempi di messaggio METAR

Observations for GIOIA, Italy (LIBV)

LIBV 300655Z 11009KT 4000 BR SCT030 BKN040 08/06 Q1020 RMK OVC VIS MIN 4000 WIND THR14 13008KT GRN LIBV 300555Z 12010KT 4500 BR SCT025 BKN040 09/07 Q1021 RMK OVC VIS MIN 4500 WIND THR14 14008KT GRN LIBV 300455Z 12010KT 5000 BR OVC040 09/07 Q1021 RMK OVC VIS MIN 5000SE WIND THR14 12008KT WHT LIBV 300355Z 12012KT 4000 BR OVC040 09/07 Q1021 RMK OVC VIS MIN 3000SE WIND THR14 12009KT YLO LIBV 300255Z 12010KT 3100 BR OVC030 09/07 Q1021 RMK OVC VIS MIN 2800SE WIND THR14 13007KT YLO

Fonte: http://weather.uwyo.edu/cgibin/wyowx.fcgi?TYPE=metar&DATE=current&HOUR=current&UNITS=A&STATIO N=LIBv

9

Requisiti hardware minimi:

• Sistema operativo: Windows XP o 2000, o equivalente. Può anche girare sotto emulatori su altri sistemi operativi. Non funziona con Windows 95. La compatibilità con Windows 98 e ME non è garantita al 100%.

• Processore: Pentium o più (raccomandato); 486 (minimo).

- RAM: 128 MB o più (racommandato); 32 MB (minimo)
- Spazio su disco fisso: minimo 40 MB.

• Fonte dei dati: è raccomandata la connessione a Internet, poichè consente di accedere a numerosi siti pubblici e privati che forniscono dati meteorologici.

Cos'è Digital Atmosphere?

•E' un potente strumento di analisi e previsioni meteorologiche. E' il più acclamato programma di meteorologia per Windows, ed è usato dal *National Weather Service*, dall'Aeronautica e dalla Marina Militare statunitense, da dozzine di emittenti televisive, da centinaia di appassionati e hobbisti.

•Le sue potenzialità consentono di tenere sotto controllo l'evoluzione del tempo in qualsiasi punto del pianeta.

•In breve, DA è fondamentalmente un programma di rappresentazione geografica che si alimenta di bollettini meteo disseminati dal *National Weather Service* mediante siti Internet, sistemi satellitari e database meteo. Utilizzando questi dati, genera campi plottati e analisi che sono equivalenti a quelli prodotti dalle workstation multimilionarie.

DA consente di produrre carte geografiche con una grande varietà di opzioni

In questa presentazione mostrerò alcune delle numerose varianti di carte che possiamo creare come sfondo per i nostri dati meteo.

CODE									• <u>n</u> o <i>m</i>
has		R	G	8	COL	LIN	STYL	MISC	
1000	Background color	230	230	255		-			
lan	Land color	255	255	240		-)			dabbiama
inl	International Boundary	230	170	090	\smile	2		-	
sta	State-Province Boundary	230	170	090		2		1	semplicemente
cst	Coastline	230	170	090		2			cliccare sulla
isl	Islands	230	170	090		2			relativa casella
lak	Lake borders	230	170	090		1			
laf	Lake fill color	230	230	255					
riv	Rivers	230	170	090		1			
If you	do not save your changes, th	ney wi	ll be d	liscar ?	ded. <u>H</u> elp		Sa	ve ch	anges Delete e as <u>d</u> efault preferences

🤰 Prefe	erences												_	
General	Meteorological	Maps	Station	n Plots	s Ar	nalysi	s	Styles	Mise	-				
Select	style Regular an	nalysis sty	/le [ana	lysis.	.sty]						•	<u>N</u> ev	v	
CODE	PARAMETER		R	G	в	COL	LIN	STYL	MISC	SIZ	FONT			
bas	Background color		230	230	255		-							
lan	Land color		000	128	000		-							
inl	International Boun	idary	230	170	090		2							
sta	State-Province Bo	oundary	230	170	090		2		1					
cst	Coastline		230	170	090		2							
isl	Islands		230	170	090		2							
lak	Lake borders		230	170	090		1							
laf	Lake fill color		230	230	255									
riv	Rivers		230	170	090		1		_					
If you c	lo not save your c	hanges, t	hey wi	ll be c	liscar	ded.	(Sa	ive ch	ange	s	Dele	ete	
_	/ ок	🗙 Car	icel		?	Help		1	l Save	38	default	preferer	nces	
				÷.,	1				¢.	1				20

Genera	I Meteorological Maps	Station	n Plots	s Ar	nalysi:	5	Styles	Misc		_				1
Select	style <u> VILLASMUNTA [VIL</u>	LASMU	JNTA.	.styj						▼	_	New		
CODE	PARAMETER	R	G	в	COL	LIN	STYL	MISC	SIZ	FONT				
bas	Background color	215	215	255		-								
lan	Land color	250	222	182		-								
inl	International Boundary	000	000	000		2								
sta	State-Province Boundary	230	170	090		2		1						
cst	Coastline	255	255	255		2								
isl	Islands	000	000	000		2								
lak	Lakes	230	170	090		4								
laf	Lake fill color	180	180	255										
riv	Rivers	230	170	090		4							-	
If you o	do not save your changes, t	hey wi	llbed	liscar	ded.		Sa	ve ch	ange	s)	Dele	ie	

Queste sono solo alcune delle carte che si possono ottenere con Digital Atmosphere.

Manipolando i dati attraverso un potente linguaggio di script, è possibile creare carte anche molto complesse.

<mark>41</mark>

Proiezione (ortografica, stereografica polare, —	Le principali proprietà del menu delle mappe
Mercatore, ecc.)	Map configuration
	Projection Orthographic
Latitudine e	except in the professional Digital Atmosphere version. Please see the help file's Generate Map section.
longitudine	Latitude 41.242 (N)
Scala —	Longitude 14.921 (E)
	Scale 1448 nm 🖌 📄
Altezza e larghezza	Image width 800 pixels
della mappa in pixel	Image height 700 pixels
	Color style Classic color scheme
Funzioni avanzate per utenti esperti	ADVANCED PROPERTIES (Expert users only) Offset Aspect Reset $\frac{X}{\sqrt{0}}$ 1 Satellite projection attitude (AGL) $\frac{1}{35766}$ km
Funzioni di scelta rapida	GUICK PICK By station -or- By location preset (none) V Zoom level None selected V Map size None selected V
Corso DA - Ma	ppe

Quick pick
Trascuriamo per il momento tutte queste proprietà e concentriamoci sulla funzione Quick pick , che ci consentirà di realizzare rapidamente la nostra prima carta geografica.
QUICK PICK By station -or- By location preset (none) Zoom level None selected Map size None selected Vone selected Map size Cancel ? Help
Corso DA - Mappe 10

mappe meteorologiche.

Corso DA - Mappe

Esercizio:

Realizza le mappe geografiche dell'Europa, della Francia e della Grecia.

Nella prossima lezione:

•Come si prelevano i dati meteorologici

• Come si traccia una carta sinottica del tempo

Corso DA - Mappe

15

Fai scorrere il cursore "DATA PLOT CROWDING" fino a 100%.

Ora ripetiamo l'operazione di plottaggio selezionando Data > Data plots.

Come potrai osservare, le stazioni plottate sono diventate molto più numerose.

WEATHER	GRAPH (Observation and Plotting						CONV	ERSION	TOTAL SA TEMPERA	TOTAL SKYCOVER - 59 WEDIS CLOUD - JOINS WHID DRACTION - han NE USE SKYCOVER - 59 WHID DRACTION - han NE						
IME ZONES In the thread threa	Address 615 for deployed sound address 716 for deployed sound address 716 for deployed sound FUJITA SCALE A scale of formado domage. 76: 40-72 mph. Telga and							Backs - M mit - M Deg F - (1) Deg C - (1) Deg C - (1)	PH12.0.60040 htts1.0444 Ph12.0.64673 Deg C x 1.6) + 30 Deg K - 27316) Deg K - 27316) org K - 27316 mg K - 27316	WEATHER VISIBILIT DEWPOR LOW CLO LOW CLO	Шител - мануан						
International and the second	branches anap of is es. Sons whiches break. FI: 73-112 mph. Publes moving care of road. Pips mobile homes F2: 113-107 mph. Uprostaturge							mba bi inter a m	Deg F - 32 x 0.5 chea x 33 0606 b x0 028530233	10/3/46.							
	tress and the molto of items Incluse. 191: 109-201 mph. Beveredamage Care Illed antitizen. Traise overland. 191: 207-200 mph. Levels weil-ball	A tel styces	a Pressae travel	W Partnester	C, Lonchus O	C, Watercoat O	C, Hyprowd 0	00 O			⁰³ ()	04	05 ∞	06 S	07 \$	08 6	09 LS
EAUFORT WIND SC	ALE	1 D	1	nos	L1		H1	10	11	12	13	14	¹⁵)•(16 (•)	17(尺)	18 7	19][
No. Most Sec. Description 0 0.1 0.1 0.1 0 0.7 0.1 0.1 0.1 0 0.7 0.1 0.1 0.1 0.1 0 0.7 0.1	2	2	2 (Decempers		M2	H2	20 •]	²¹ •]	²² *]	23 *]	24~]	²⁵ ♥]		²⁷ ∲]	²⁸ =]	29	
	³ ()	3	3 5-4-		M3	H3	30 S		32 S	33 59	34 S	³⁵ 5	36 +-	³⁷	38 +	39	
 10 00 20 00 00 00 00 00 00 00 00 00 00 00		4	4	4	L4	M4	H4		41	42	43 <u> </u>		45	46		48 ¥	49
		5 •	5	5 9 	15~	M5	HS	50 9	51 • •	52 ;	53 11	54 ;	55	56 ₉	57	58 •	59
		6) 41 prior management	Same	6 •	L6	M6 ×	H62	60 •	61 ••	62	63	64	65 •	unaitar ite 99	67 16\@	68 •	69
		7 0	7 January e	⁷ *	17	M7		70 *	71 **	72 * *	73 * *	74 * * *	75 * ***	76	77 	78 	⁷⁹
				8 ∇				80 🔮	81 ÷	82 *	83 *	84 •	85 * V	86 * 7	87 () Siperconer. pr	⁸⁸ ⊖	89 ♦
		⁹ 🚫	9	8 K	1º 🖂	M9	H92	90 ♦	91 K.	92 K	93 KJ	94 [7] <u>%</u>	95	* ₹	97 •(*	⁹⁸ 戊	99

	I messaggi sinotti emessi ogn	ci (SYNOP) sono ii tre ore:	
	SINOTTICO PRINCIPALE	SINOTTICO INTERMEDIO	
	00	03	
	06	09	
4	12	15	
	18	21	
-			4

Questi semplici concetti appena espressi ci aiutano a scegliere opportunamente il tipo di messaggio da assimilare e la finestra di tempo entro cui richiederli.

> In parole povere, dobbiamo attendere (*per un tempo ragionevole!*) che i dati giungano al sito accentratore per poterne assimilare il maggior numero possibile.

13 marzo 2006: Ventiquattrore di pioggia e **l'Ofanto** è esondato, allagando campi e vigneti. Il torrente ha rotto gli argini in vari punti. I danni maggiori sono stati registrati tra Canosa e Cerignola. Gli uomini del nucleo di vigilanza ittico faunistica ambientale di Barletta e vigili del fuoco hanno potuto fare poco per arginare l'esondazione. Colpa degli agricoltori che per anni hanno occupato, disboscato e modificato oltre 200 ettari dell'alveo, così come sostenuto dall'accusa nel processo sullo scempio del fiume che divide le province di Bari e Foggia.

Continua l'allerta **maltempo in Puglia**, **Basilicata e Molise**. Da ieri nevica senza sosta in Basilicata, in particolare nel Potentino colpito da vere e proprie bufere. Le strade per ora restano percorribili anche se la polizia stradale raccomanda agli automobilisti di mettersi in viaggio solo se necessario e con le catene a bordo. Nel pomeriggio, forse a causa dell'asfalto reso viscido dal ghiaccio, un mezzo dell'Anas è finito fuori strada. Illesi il conducente e il passeggero. Circa 3400 utenti dell'Enel sono ancora al buio. 62 linee sono fuori servizio e 560 cabine sono state disattivate. Per ripristinare il servizio a Potenza sono al lavoro 200 tra tecnici e operai dell'Enel. Per segnalazioni ed interventi urgenti, l'Enel ha messo a disposizione il numero verde gratuito 803 500. Anche domani a Potenza le scuole resteranno chiuse, come ha disposto con un'ordinanza il sindaco Vito Santarsiero.

Traffico a rilento sulle **autostrade**, compresa la A3 Salerno-Reggio Calabria anche se non si registrano grossi disagi per gli automobilisti. Da sabato sera è stato messo a punto dall'Anas un piano antineve che vede impegnati 80 uomini, 25 mezzi spazzaneve e spargisale.

In **Capitanata** la situazione più delicata riguarda il Candeloro e il Fortore monitorati continuamente perchè ingrossati. Difficoltà anche per i collegamenti via mare. Sospeso per ora quello tra le Isole Tremiti e Termoli.

La temperatura dell'aria diminuisce di circa 1°C ogni 100 metri (*se non intervengono altri processi*).

> Nevica quando la temperatura al suolo è almeno sotto i 2°C (ammettendo che ci siano tutte le altre condizioni).

Quindi, in maniera speditiva, se abbiamo 6 gradi al livello del mare, possiamo dedurre che nevicherà a cominciare dai 400 metri.

25

L'analisi non produce mai un'esatta rappresentazione dei campi meteorologici.

Non c'è modo di far ciò senza precipitare in un mare di "rumore" matematico, che si manifesterebbe con linee e curve molto frastagliate.

L'analisi, infatti, richiede un delicato equilibrio tra rappresentatività ed estetica.

> Per raggiungere questo obiettivo, si utilizzano diversi metodi d'analisi.

Le fondamenta

Per comprendere pienamente come funzionano le routine di analisi, è necessario conoscere un po' della teoria che ne costituisce la base.

Analysis type • Nearest Neighbor • Weighted • Barnes • Cressman		To create documenta "Analysis :	different ty; ation under Scripting".	oes of ar "Analysi	nalyses, s" and tř	see the help ne Appendix under	
Smoothing coefficient	Automa	atic smoothin	ig ▶ 0.50 th]	lsc	opleths Small fonts	
Smoothing passes	•		▶ 2			Negative fonts	
Surface radius	•		▶ 100 nm			Transparent fonts	
Upper radius	•		▶ 400 nm		Hig	ghs and lows	
Gamma	4		0.30			Use NMC font	
Reduction	1		▶ 5				
🗸 ок	🗙 Cance		? <u>H</u> elp		Save a	s <u>d</u> efault preferences	:

General Meteorological	Maps	Station Plots	Analysis	Styles	Misc		_ 1_
Analysis type C Nearest Neighbor C Weighted C Barnes C Cressman		To create document: "Analysis	different ty _} ation under Scripting".	oes of an "Analysis	ialyses, s" and th	see the help he Appendix under	
Smoothing coefficient	Auto	omatic smoothin smoo	ng ▶ 0.10 th			opleths Small fonts	
Smoothing passes	•		• 0			Negative fonts	
Surface radius			▶ 100 nm				
Opper radius Gamma			▶ n 3n		Hig	ghs and lows	
Reduction			▶ 5			Use NMC font	
	× co		7 Halp	1	Save a	s default preferences	
	👝 Ca		1 Tielh				
	1						

Preferences Seneral Meteorological	Maps Station Plots Analysis Styles	s Misc	
Analysis type Nearest Neighbor Weighted Barnes Cressman	To create different types of documentation under "Analy "Analysis Scripting".	analyses, see the help sis" and the Appendix under	
Smoothing coefficient	Automatic smoothing	Isopleths	
Smoothing passes	▲ ▶ 2	Negative fonts	
Surface radius	100 nm	Transparent fonts	
Upper radius	400 nm	Highs and lows	
Gamma	● 0.30	Use NMC font	
Reduction	€ 5		
🗸 ок	X Cancel	Save as <u>d</u> efault preferences	
5			
	a fill the store		42

Se stai compiendo i primi passi nello studio della meteorologia, presto avrai il piacere di scoprire che non tutti i dati sono accurati al 100%.

web.tiscalinet.it/scarpettina

Alcuni errori possono essere trascurabili, altri possono degradare l'informazione, fornendo un'analisi alterata.

Osservando l'analisi del campo termico a 850 hPa possiamo notare una sospetta concentrazione di isoterme.

Spesso gli errori di analisi dovuti a dati non corretti, si rivelano alla nostra vista proprio perché generano delle curiose singolarità, che l'analisi accentua contornando il dato sospetto con numerose isolinee.

Possiamo	corregge	re il da	to
	Cusikin soladi ha sa B	20 20 - 0 ×	
	Temperature -31.7 deg C Dewpoint -9999.0 deg C Witho	ICAO VMMO 71906 LAT 58.10 LON -68.42 ELEV 39	2 9-
608		TIME 0 MB LEVEL FT LEVEL FT LEVEL C	
*	Height 1381 dam Pressure tendency mb x 10 (no negs) Pressure trend "s" code (0 to 8) Cloud codes (L, M, H)	Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system	
ter state st	Maximum/minimum temperature (tens of deg C) Max 24 Max 6 Min 24 Min 6	? Help	
1047 850 1047 850 1047 850 1047 850 1047 850 1047 850 1047 850 1047 850	1 hr 6 hr 15 hr 2 hr 9 hr 18 hr 3 hr 12 hr 24 hr		13
1020380b	AB THE PERAFORE 1		

Possiar cance	no semplic llare quel c	emente lato
	165 4.69-10-12-141_16 -18 Quality Control Panel	20 20 A0 71906 AT 593.10 ON 66.42 LEV 33 ME 0 IB LEVEL
	Height 1381 dam Pressure tendency mb x 10 (no negs) Pressure tend Cloud codes (L, M, H) Cloud codes (L, M, H) Maximum/minimum temperature (tens of deg C)	LEVEL Accept entry
	Max 24 Max 6 Min 24 Min 6 Precipitation (min x10) 1 1 hr 6 hr 2 hr 9 hr 3 hr 12 hr 3 hr 12 hr 4 hr 18 ft 16 ft 15 hr	15

Adesso potrai osservare una nuova mappa con le informazioni corrette.

Se questo non succede ancora, ripeti la procedura fin qui illustrata sino a che non troverai tutte le stazioni riportanti dati errati.

Questa procedura non solo corregge la rappresentazione dei dati, ma anche le analisi e i profili generati.

Tuttavia, talvolta può accadere che si trascuri un dato importante per la successiva evoluzione atmosferica.

Quando accade, i modelli possono condurre il previsore ad errate valutazioni e di conseguenza a sbagliare clamorosamente le previsioni del tempo.

<u>21</u>

Se si studia un fenomeno senza conoscerne tutte le relazioni causali fra le sue variabili, l'interpretazione non può essere esatta. L'avvicinamento alla realtà è permesso dallo

spirito critico, definito come la capacità di analizzare la coerenza di un'interpretazione di dati esterni.

Vittorio Villasmunta

1

Il linguaggio di *script* è una potente funzione che ci consente di istruire DA a compiere ogni operazione in maniera autonoma.

Possiamo in tal modo scaricare i dati ogni mezz'ora ed avere sempre l'ultima mappa sullo schermo, o inviare automaticamente le mappe alla stampante, e molto altro ancora!

Vittorio Villasmunta

Per istruire DA, abbiamo a disposizione una numerosa schiera di comandi.

In questa lezione inizieremo il nostro viaggio all'interno della funzionalità di DA più bella e <u>ricca di soddisfazioni</u>.

Vittorio Villasmunta

Per cui si dovrà procedere in questo modo nella costruzione dello script:

- La prima istruzione riguarderà l'eventuale impostazione del livello attivo (ad esempio, 500 hPa)
- Seguirà il campo di base da trattare (come, ad esempio, la temperatura)
- Eventuali conversioni tra unità di misura (ad es., da m/s a nodi)
- Infine, le modalità di presentazione grafica del campo prescelto (ad es., l'intervallo di contour).

Non attenersi a queste semplici regole può portare a risultati assolutamente imprevedibili!

Vittorio Villasmunta

Naturalmente, preso da solo non serve a nulla, poiché dobbiamo sempre specificare su <u>quale</u> <u>campo</u> CONT deve operare.

Diamo quindi un'occhiata ai principali campi su cui CONT esercita la sua funzione:

Vittorio Villasmunta

13

Temperature Temperatura TEMP C Temperatura del punto di DWPT C rugiada (dewpoint) Temperatura potenziale THTA Κ THTE Κ Temperatura equivalente potenziale Temperatura di bulbo BULB C bagnato Vittorio Villasmunta 14

Tecnica dell'altezza dello 0℃ della temperatura di bulbo bagnato

Ulteriore ausilio alla previsione del tipo di precipitazioni: fornisce come elemento aggiuntivo gli effetti del raffreddamento latente.

altezza Tw	Forma di precipitazione	
<u>≥</u> 3000f†	Quasi sempre pioggia; la neve è rara	
2000÷3000ft	Per lo più pioggia; la neve è improbabile	
1000÷2000f†	Pioggia persistente: facilmente può mutarsi in neve	
<1000ft	Quasi sempre neve; solo leggere o occasionali precipitazioni di acqua	

CONT BULB

Va	lutazione dell'instab	oilità attraverso l'es temperatura potenzi	ame delle variazioni iale	della
	Conoscendo le varia: ''altezza delle varie conto delle condizi dell'atmosfera.	zioni della temperat superfici isobarich oni generali di sta	rura potenziale θ con ne, ci si può render ibilità ed instabilita	n e à
	Stabilità assoluta	D0 / Dz > 0	Dθ _p / Dz > 0	
	Instabilità assoluta	D0 / Dz < 0	Dθ _p / Dz < 0	
				,
		Vittorio Villasmunta		23

Umidità			
Umidità relativa	RELH	%	
Rapporto di mescolanza	MIXR	g/kg	
		<u> </u>	
Vittorio Villasm	unta	25	;

Pressione e geopotenziale		
Pressione al livello del mare (QFF)	SLPR	hPa
QNH (altimeter setting)	ALST	mmHg
Tendenza barometrica	PTEN	hPa
Altezza geopotenziale	HGHT	mgp
Campo del geopotenziale geostroficamente bilanciato	GHGT	Mgp
Pressione in quota	PRES	hPa

Velocità del vento	WSPD	m/s
Vento (riferito al nord vero)	WIND	m/s
Direzione del vento	WDRC	0
Componente ovest-est	UGRD	m/s
Componente sud-nord	VGRD	m/s

Precipitazioni		
Nell'ora passata	PC01	Pollici
Nelle due ore precedenti	PC02	Pollici
Nelle tre ore precedenti	PC03	Pollici
Nelle sei ore precedenti	PC06	Pollici
Nelle nove ore precedenti	PC09	Pollici
Nelle dodici ore precednti	PC12	Pollici
Vittorio Villasmu	Inta	29

	Indici			
Wind chill		WCHL	۴]
Heat Index		HIDX	۴	
Humidex		HUMX	C	
		,		_
	Vittorio Villasmunta	a		30

Varie				
Latitudine		LATT	0	
Longitudine		LONG	0	
Altitudine		ELEV	m	
			1	
	Vittorio Villasmunt	a		31

Il linguaggio di *script* è una potente funzione che ci consente di istruire DA a compiere ogni operazione in maniera autonoma.

Possiamo in tal modo scaricare i dati ogni mezz'ora ed avere sempre l'ultima mappa sullo schermo, o inviare automaticamente le mappe alla stampante, e molto altro ancora!

Vittorio Villasmunta

Per istruire DA, abbiamo a disposizione una numerosa schiera di comandi.

In questa seconda lezione proseguiremo il nostro viaggio all'interno della funzionalità di DA più bella e <u>ricca di soddisfazioni</u>.

Vittorio Villasmunta

3

<text><text><text><text>

Per cui si dovrà procedere in questo modo nella costruzione dello script:

- La prima istruzione riguarderà l'eventuale impostazione del livello attivo (ad esempio, 500 hPa)
- Seguirà il campo di base da trattare (come, ad esempio, la temperatura)
- Eventuali conversioni tra unità di misura (ad es., da m/s a nodi)
- Infine, le modalità di presentazione grafica del campo prescelto (ad es., l'intervallo di contour).

Non attenersi a queste semplici regole può portare a risultati assolutamente imprevedibili!

Vittorio Villasmunta

5

Temperature		
Temperatura	TEMP	C
Temperatura del punto di rugiada (dewpoint)	DWPT	C
Temperatura potenziale	THTA	К
Temperatura equivalente potenziale	THTE	К
Temperatura di bulbo bagnato	BULB	C
Vittorio Villasm	unta	

Umidità			
Umidità relativa	RELH	%	
Rapporto di mescolanza	MIXR	g/kg	1
Vittorio Villasm	unta		8

Pressione e geopotenziale		
SLPR	hPa	
ALST	mmHg	
PTEN	hPa	
HGHT	mgp	
GHGT	Mgp	
PRES	hPa	
	SLPR ALST PTEN HGHT GHGT PRES	

Velocita del vento	WSPD	m/s
Vento (riferito al nord vero)	WIND	m/s
Direzione del vento	WDRC	0
Componente ovest-est	UGRD	m/s
Componente sud-nord	VGRD	m/s

PC01	Pollici
PC01	Dollici
PC02	Pollici
PC03	Pollici
PC06	Pollici
PC09	Pollici
PC12	Pollici
-	PC02 PC03 PC06 PC09 PC12

	Indici			
Wind chill		WCHL	۴	
Heat Index		HIDX	۴	
Humidex		HUMX	C	
				_
	Vittorio Villasmunta	1		12

Varie				
Latitudine		LATT	0	
Longitudine		LONG	0	
Altitudine		ELEV	m	_
		1	1	
	Vittorio Villasmunt	a		13

Hoggowogioni	meteonelegishe el quele	
erase	meteororogicne al suoro#	
product,plf,0		
	Vittorio Villasmunta	30


```
#campo barico al livello del mare + fenomeni#
erase
product,plf,0
analyze,hilo cont cint=2 color 0:0:255 line=2 slpr
basemap
stamp
export,d:\DA\slpr.jpg
hilo: aggiunge le H e le L
```

cont: impone il contouring

cint: stabilisce l'intervallo

color: imposta il colore

slpr: indica che il campo da disegnare è quello barico al suolo

line: determina lo spessore della linea Vittorio Villasmunta

```
37
```


Proviamo ad inserire nello script anche le isoterme a 2 metri.

<pre>#campo barico al livello del mare + fenomeni + temperature 2m#</pre>	
erase	
product,plf,0,villasmunta.it	
analyze,hilo cont cint=2 color 0:0:255 line=2 sl	pr
analyze,cont cint=2 color 255:0:0 te	mp
basemap	
stamp	
export,d:\DA\slpr.jpg	

<pre>#campo barico al livello del mare + fenomeni + temperature 2m#</pre>	
erase	
product,plf,0,villasmunta.it	
analyze,hilo cont cint=2 color 0:0:255 line=2 slpr	
analyze,cont dots cint=2 color 255:0:0 temp	
basemap	
stamp	
export,d:\DA\slpr.jpg	
Vittorio Villasmunta	42

#campo barico al livello del mare + fenomeni + temperature 850 hPa + vento 10 metri# erase product,plf,0,villasmunta.it analyze, hilo cont cint=2 color 0:0:255 line=2 slpr analyze, cont dots cint=2 color 255:0:0 temp h850 analyze, vect wind basemap stamp export,d:\DA\slpr.jpg

Vittorio Villasmunta

48


```
erase
analyze, hilo cont cint=60 color 0:0:0 line=2 HGHT H500
ANALYZE, CONT CINT=2 COLOR 255:0:0 DASH TEMP H500
stamp
export,D:\DA\500.jpg
ERASE
analyze,cont cint=5 LINE=2 DOT COLOR 0:0:255 GRTN=0 PTEN
analyze,cont cint=5 LINE=2 DOT COLOR 255:0:0 LSTN=0 PTEN
analyze,cont cint=5 LINE=3 DOT COLOR 0:0:0 EQUA=0 PTEN
STAMP
export,D:\DA\PTEN.jpg
ERASE
analyze,HILO cont cint=2 LINE=2 slpr
ANALYZE, CONT CINT=2 COLOR 255:0:0 DASH TEMP H850
STAMP
export,D:\DA\slpr.jpg
```
```
ERASE
analyze,HILO cont cint=60 LINE=2 HGHT H200
ANALYZE,CONT CINT=2 COLOR 255:0:0 DASH TEMP H200
STAMP
export,D:\analisi\200.jpg
ERASE
analyze,HILO cont cint=60 LINE=2 HGHT H850
ANALYZE,CONT CINT=2 COLOR 255:0:0 DASH TEMP H850
STAMP
export,D:\analisi\850.jpg
ERASE
analyze,HILO cont cint=60 LINE=2 HGHT H700
ANALYZE,CONT CINT=2 COLOR 255:0:0 DASH TEMP H700
STAMP
export,D:\analisi\700.jpg
```

```
ERASE

analyze,HILO cont cint=60 LINE=2 HGHT H300

ANALYZE,CONT CINT=2 COLOR 255:0:0 DASH TEMP H300

STAMP

export,D:\analisi\300.jpg

erase

analyze,cont cint=5 DOT COLOR 0:0:255 GRTN=0 PTEN

analyze,cont cint=5 DOT COLOR 0:0:0 EQUA=0 PTEN

analyze,HILO cont cint=2 LINE=2 slpr

STAMP

export,D:\analisi\slpr_PTEN.jpg

erase

Vittorio Villasmunta

52
```


Nella precedente lezione abbiamo visto come si realizzano semplici file di script per disegnare carte di analisi alle quote standard.

```
#campo barico al livello del mare + fenomeni#
erase
product,plf,0
analyze,hilo cont cint=2 color 0:0:255 line=2 slpr
basemap
stamp
export,d:\DA\slpr.jpg
```

Vittorio Villasmunta

1

Commento #campo barico al livello del mare + fenomeni# (non verrà eseguito) Cancella tutto tranne la erase geografia di base Plotta i dati di osservazione secondo quanto stabilito product,plf,O nelle Preferenze analyze, hilo cont cint=2 color 0:0:255 line=2 slpr Comando che impone HILO = disegna le H e le L CONT= esegui il contouring il processamento dei CINT = intervallo di due in due comandi dopo la virgola COLOR = stabilisce il colore LINE = stabilisce lo spessore SLPR = indica che il campo da tracciare è quello delle pressioni al livello del mare. basemap Ridisegna la geografia di base Aggiunge in alto a sinistra un'etichetta con data e ora stamp dell'esecuzione dello script Salva la carta in una posizione specifica e nel export,d:\DA\slpr.jpg formato jpg 2 Vittorio Villasmunta

Alcuni comandi sono grandemente utili per selezionare opportunamente gli isovalori da tracciare:

GRTN = [numero] Disegna o riempie di colore le isolinee con valori uguali o <u>superiori</u> al numero dato

LSTN = [numero] Disegna o riempie di colore le isolinee con valori uguali o <u>inferiori</u> al numero dato

EQUA = [numero] Disegna o riempie di colore le isolinee con valori <u>uguali</u> al numero dato

Vittorio Villasmunta

Ad esempio, desideriamo ottenere una carta di analisi delle temperature che riporti solo gli isovalori uguali o superiori a 15°C.

Inoltre, le isoterme saranno rappresentate da linee punteggiate di colore rosso.

erase

analyze,cont dots grtn=15 color=255:0:0 temp

Vittorio Villasmunta

8

Non contenti, vogliamo che le isoterme con valori inferiori a 15°C siano colorate di azzurro.

erase

analyze,cont dots grtn=16 color=255:0:0 temp

analyze,cont equa=15 line=2 color=255:0:0 temp

analyze,cont lstn=14 color=0:0:255 temp

Vittorio Villasmunta

<text>

Vittorio Villasmunta

Variante: risparmiare un cassetto e disporre direttamente il contouring del nuovo campo ottenuto.

#1000-500mb Thickness#

analyze,STOR=2 HGHT H000 STOR=1 HGHT H500 analyze,CONT cint=60 COLOR=0:0:0 DOTS SDIF=1:2

basemap STAMP

export,d:\da\iso1000_500.jpg

Vittorio Villasmunta

#1000-500mb Thickness using fill colour #
analyze,STOR=3 SDIF=1:2 STOR=2 HGHT H000 STOR=1 HGHT H500
analyze,STOR=3 fill COLOR=215:0:5 fils=0 grtn=4260
analyze,STOR=3 fill COLOR=255:0:6 fils=0 grtn=4320
analyze,STOR=3 fill COLOR=255:0:64 fils=0 grtn=4380
analyze,STOR=3 fill COLOR=255:83:64 fils=0 grtn=5700
analyze,STOR=3 fill COLOR=255:0:0 fils=0 grtn=5760
analyze,STOR=3 fill COLOR=179:79:19 fils=0 grtn=5820
analyze,STOR=3 fill COLOR=128:0:0 fils=0 grtn=5880
analyze,STOR=3 fill COLOR=64:0:0 fils=0 grtn=5940
analyze,STOR=3 fill COLOR=128:99:0 fils=0 grtn=6000
analyze,STOR=3 fill COLOR=98:75:0 fils=0 grtn=6060
analyze, over CONT cint=60 COLOR=0:0:0 DOTS SDIF=1:2
Vittorio Villasmunta 44

	campi	sono:
	Addizione	SSUM
Operazioni tra due campi	Sottrazione	SDIF
	Moltiplicazione	SMLT
Operazioni tra un campo ed una costante numerica	Divisione	SDVD
	Somma	SADC
	Differenza	SSBC
	Prodotto	SMLC
	Quoziente	SDVC

Vittorio Villasmunta

Per automatizzare il prelievo dei messaggi meteo da una fonte disponibile su Internet, possiamo utilizzare il comando download.

DOWNLOAD, url, filename

url: l'indirizzo presso cui è disponibile la risorsa (RFC 1738 standard URL), incluso il nome del file da prelevare

filename: il nome completo da attribuire al file completo della posizione locale in cui verrà memorizzato

download,http://weather.cod.edu/digatmos/sao/@Y@M@D@H. sao,c:\Programmi\DigitalAtmosphereWS\data\incoming.asc

Vittorio Villasmunta

Prelevati i dati, si dovrà utilizzare il comando INGEST per dare inizio alla loro effettiva decodifica				
INGEST, filename				
Importa (decodifica) i dati specificati dal nome del file (filename è il nome del file completo del percorso).				
ingest,c:\Programmi\DigitalAtmosphereWS\data\incoming.asc	!			
Vittorio Villasmunta 3				

erase

download,http://weather.cod.edu/digatmos/sao/ @Y@M@D@H.sao,c:\Programmi\DigitalAtmosphereWS \data\incoming.asc

ingest,c:\Programmi\DigitalAtmosphereWS\data\
incoming.asc

Vittorio Villasmunta

Esempio di file di script che preleva i METAR più recenti, li decodifica, quindi traccia il campo barico, quello termico, i venti ed i fenomeni, ed infine salva l'immagine in una cartella predefinita:

```
erase
download,http://weather.cod.edu/digatmos/sao/@Y@M@D@H.sao,
c:\Programmi\DigitalAtmosphereWS\data\incoming.asc
ingest,c:\Programmi\DigitalAtmosphereWS\data\incoming.asc
analyze,cont cint=2 line=2 slpr
analyze,cont cint=2 color=255:0:0 dots temp
analyze,vect wind
product,plf,0
basemap
stamp
export,d:\da\analisi.gif
<u>twooVllasmuta</u> 5
```


@FFZ	Anno UTC (4 cifre)	@FFL	Anno locale (4 cifre)
@YYZ	Anno UTC (2 cifre)	@YYL	Anno locale (2 cifre)
@MMZ	Mese UTC	@MML	Mese locale
@DDZ	Data UTC	@DDL	Data locale
@HHZ	Ora UTC	@HHL	Ora locale
@NNZ	Minuti UTC	@NNL	Minuti locali

In Internet esistono numerosi siti da cui prelevare i vari messaggi meteo. Un elenco interessante è quello riportato in DA stesso.				
Data Retri METAR METAR METAR METAR METAR SYNOD Current tin @Y 05 File: In URL: In Status: In Progress: In	Iteval Window Iterative If rom COD (US only) from MVS (US only, sometimes delayed) from Abany (worldwide) from Abany (worldwide) for Kansas/Tribune if the state from COD (worldwide) Image: Comparison of the state if the state Image: Comparison of the state			
	Vittorio Villasmunta	11		


```
download,http://weather.cod.edu/digatmos/sao/@Y@M@D@H.sao,
c:\Programmi\DigitalAtmosphereWS\data\METAR_@DDZ@MMZ@YYZ_@
HHZ.asc
ingest,c:\Programmi\DigitalAtmosphereWS\data\METAR_@DDZ@MM
Z@YYZ_@HHZ.asc
analyze,cont HILO cint=2 line=2 slpr
analyze,cont cint=2 color=255:0:0 dots temp
analyze,vect wind
product,plf,0
basemap
stamp
export,d:\da\AS_@DDZ@MMZ@YYZ_@HHZ.gif
```


Upload.bat upload d:\DA\AS.gif ftp://ftp.villasmunta.it/villa smunta.it/public/AS.gif xxxxxx@aruba.it xxxxxx /passive

Vittorio Villasmunta

19

Scheduler Specifichiamo i minuti o le Ore Ore Enter execution events by specifying a roundigron of execution time, a space, and the filename of the script. For detailed information see the help files. Use ** for the hour digits to execute every hour Use Mxxx to run the script every xxx minutes (use three digits!) ***20 1. download_METAR. dsf ***40 1. download_METAR. dsf	
Enable scheduler Save X Cancel 2 Help	
Vittorio Villasmunta	28

